

DH-003-001616

Seat No.

B. Sc. (Sem. VI) (CBCS) Examination

March-2022

Mathematic: BSMT-601(A)

(Graph Theory & Complex Analysis-2)
(Old Course)

Faculty Code: 003 Subject Code: 001616

Time : $2\frac{1}{2}$ Hours] [Total Marks : 70]

Instructions: (1) All the questions are compulsory.

- (2) Figures to the right indicates marks.
- 1 Answer the following questions:

- (1) Define degree of a vertex in a graph.
- (2) Give an example of a complete bipartite graph which is isomorphic to cycle graph with 4 vertices.
- (3) Define unilaterally connected graph.
- (4) Complete graph K_n os Euler graph if and ony if n is even. (True/False)
- (5) Number of edge-disjoint Hamiltonian circuits in complete graph K_9 is _____.
- (6) What is chromatic mumber of a bipartite graph?
- (7) Define binary tree.
- (8) What is the number of fundamental cut-sets in any connected graph ?

- (9) Vertex connectivity of complete bipartite graph $K_{m,n}$ is _____.
- (10) Number of faces in a connected planar graph with n vertices and e edges is _____.
- (11) A series $\sum_{n=0}^{\infty} \frac{1}{1-z}$ is convergent for _____.
- (12) Every convergent series is aboslutely convergent. (True/False)
- (13) Write Maclaurian series of e^z .
- (14) Define zeros of a complex function.
- (15) Define essential singular point.
- (16) What is the residue of $\frac{\sin z}{z}$ at $z_0 = 0$?
- (17) The value of $\int_C e^{\frac{1}{z}} dz$ is_____.
- (18) Define conformal mapping.
- (19) Write a linear transformation that reflect expansion or contraction.
- (20) What is genral form of a bilinear transformation?
- 2 (A) Attempt any three:

- (1) Prove that in any graph G the number of odd vertices is always even.
- (2) What will be the resultant graph by using the following operations?
 - (a) $K_n \setminus \{v\}$, where v is any vertex of K_n .
 - (b) $G \oplus G$, where G is any graph.
- (3) Find the number of pendant vertices in any binary tree on n vertices.
- (4) Drwa (geometric) dual of the graph K_4 .

- (5) Find rank and nullity of $K_{2,3}$.
- (6) (a) What is the dimension of circuit subspace?
 - (b) What is the dimension of cut-set subspace?

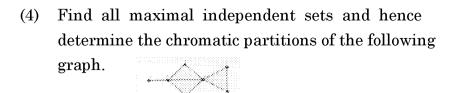
2 (B) Attempt any three:

9

- (1) Prove that a graph G is a tree if and only if G is minimally connected.
- (2) Prove that mumber of edge-disjoint Hamiltonian circuits in K_n is $\frac{n-1}{2}$, where n is odd and $n \ge 3$.
- (3) Derive formula to obtain minimum height for any binary tree on n vertices.
- (4) For any connected planar bipartite graph with n vertices and e edges, prove that $e \le 2n 4$
- (5) Prove that vertex connectivity of any connected graph G with n vertices and e edges is less than or equal to $\left\lceil \frac{2e}{n} \right\rceil$
- (6) Prove that the rank of incidence matrix of any graph on n vertices is n-1.

(C) Attempt any Two:

- (1) Prove that a graph G is disconnected if and only if vertex set of G can be partitioned into two nonempty, disjoint subsets V_1 and V_2 such that there is no edge in G with one end vertex in V_1 and other end vertex in V_2 .
- (2) Prove that the maximum number of edges in any simple graph with n vertices and k components is $\frac{(n-k)(n-k+1)}{2}$
- (3) Prove that a connected graph G is an Euler graph if and only if each vertex of G is even.



- (5) Prove that $(W_G, +_2, ._2)$ is a vector space over \Box .
- 3 (A) Attempt any Three:

6

- (1) If $Z_n = \frac{1}{n^3} + i$, then using definition show that $\lim_{n \to \infty} Z_n = i$.
- (2) Find the Maclaurian's series of $z\cos(z)$.
- (3) Prove that $f(z) = e^z$ is conformal mapping at each point of Z-plane.
- (4) Describe transformation w = z + a.
- (5) Evaluate $\int_{C} \frac{1}{z(z-2)} dz$, C: |z| = 3.
- (6) Find residue of $\cot z \, zt \, z = 0$.
- (C) Attempt any Three:

- (1) For |z| < 1, prove that $\sum_{n=0}^{\infty} z^n = \frac{1}{1-z}$.
- (2) Expand sin z into a Taylor's series about the point $z_0 \frac{\pi}{2}$.
- (3) Find Laurent's series expansion in powers of z for the function $f(z) \frac{1}{(z^2+1)(z+2)}$ in the region 1 < |z| < 2.
- (4) Discuss the types of isolated singilarities with suitable examples.
- (5) Determine fixed points and critical points of the bilinear transformation $\omega = \frac{z-1}{z+1}$.

- (6) Show that the linear transformation $\omega = \frac{1}{z}$ maps the circle |z-2i|=2 into the straight line $4\nu+1=0$.
- (C) Attempt any Two:

- (1) State and prove Taylor's theorem.
- (2) State and prove Cauchy's residue theorem.
- (3) Evaluate $\int_{C} \frac{3z^3+2}{(z-1)(z^2+9)} dz$; C:|z|=4.
- (4) Show that $\int_{0}^{\infty} \frac{x \sin ax}{x^2 + k^2} dx = \frac{\pi}{2} e^{-ak} \ (a > 0, k > 0)$
- (5) Find linear fractional transformation which maps the points $z_1 = -1$, $z_2 = 0$, $z_3 = 1$ onto the points $w_1 = -i$, $w_2 = 1$, $w_3 = i$.